1. Randomly place the numbers from 1 to 30 in the squares at the bottom of the page (this represents 30% of the population). Then complete the tables below by counting the number of salamanders in each sqaure and placing it next to the corresponding number. (9 Marks)

Sample	\# of salamaners	Sample	\# of salamaners	Sample	\# of salamaners
1		11		21	
2		12		22	
3		13		23	
4		14		24	
5		15		25	
6		16		26	
7		17		27	
8		18		28	
9		19		29	
10		20		30	
Total		Total		Total	

2. Since the first ten samples taken was 10% of the population, how many salamanders would be in 100% of the population
\qquad x $=$ \qquad (Hint $10 \% \times 10=100 \%$) (1 Mark)
3. All three of the tables represent 30% of the population. Your total salamanders from the three tables is \qquad $+$ $+=$ $=$ (1 Mark)
Based on your 30% sample size what would be a good estimate for the population of salamanders? \qquad (Hint 30\% x 3.33 = 100\%). (1 Marks)

Analysis

4. If the true population size of salamanders was 540, which sample 10% or 30% was more accuarate? \qquad (1 Mark)
5. Why do biologist use sampling instead of counting all of the individuals in a population?
\qquad
6. Was this sampling method effective in estimating the total population of salamanders? \qquad (1 Mark)
7. What are 3 types of organisms that this sampling will work for? \qquad (2 Marks)
8. What is one organism that this sampling will NOT work for? \qquad Why wont it? (1 Mark)
\qquad

9. What is the population density of the salamanders I sampled?

To do this you need to calculate the amount of salamanders over the total area.

The number of total salamanders from the first part of question \#3.
Each square represented $\mathbf{1 0} \mathrm{m}^{2}$ so the area of my sample is $\mathbf{1 0} \mathrm{m}^{\mathbf{2}} \mathbf{x} \mathbf{3 0}=$ \qquad m^{2}

To calculate use the following formula

Estimated Population Density $=\frac{\text { total number of individuals (salamanders) }}{\text { Sampling area }}$

Estimated Population Density $=\frac{\text { salamanders }}{\mathrm{m} 2}$

Estimated Population Density = \qquad salmanders/m² (4 Marks)
10. If you were asked to estimate the population of salamanders in a $10,000 \mathrm{~m}^{2}$ area, what would be your estimate?
\qquad salamanders $/ \mathrm{m}^{2} \mathrm{x}$ \qquad $\mathrm{m}^{2}=$ \qquad salamanders (1 Mark)

