The analysis of DNA can help researchers determine which polypeptides are produced by particular genes. Similarly, but in reverse, the analysis of polypeptides can provide information about the genes that are associated with them. In this activity, you will work backward from a polypeptide chain to construct a fragment of DNA that might code for it.

Procedure

The illustration shows an imaginary polypeptide produced by a bacterial cell.

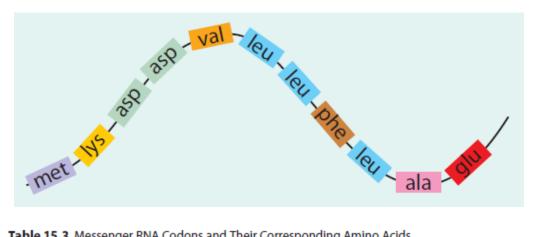


Table 15.3 Messenger RNA Codons and Their Corresponding Amino Acids

First Base	Second Base					
	U	С	A	G		
U	UUU phenylalanine	UCU serine	UAU tyrosine	UGU cysteine	U	
	UUC phenylalanine	UCC serine	UAC tyrosine	UGC cysteine	C	
	UUA leucine	UCA serine	UAA stop**	UGA stop**	A	
	UUG leucine	UCG serine	UAG stop**	UGG tryptophan	G	
С	CUU leucine	CCU proline	CAU histidine	CGU arginine	U	
	CUC leucine	CCC proline	CAC histidine	CGC arginine	C	
	CUA leucine	CCA proline	CAA glutamine	CGA arginine	A	
	CUG leucine	CCG proline	CAG glutamine	CGG arginine	G	
A	AUU isoleucine	ACU threonine	AAU asparagine	AGU serine	U	
	AUC isoleucine	ACC threonine	AAC asparagine	AGC serine	C	
	AUA isoleucine	ACA threonine	AAA lysine	AGA arginine	A	
	AUG methionine*	ACG threonine	AAG lysine	AGG arginine	G	
G	GUU valine	GCU alanine	GAU aspartate	GGU glycine	U	
	GUC valine	GCC alanine	GAC aspartate	GGC glycine	C	
	GUA valine	GCA alanine	GAA glutamate	GGA glycine	A	
	GUG valine	GCG alanine	GAG glutamate	GGG glycine	G	

^{*} AUG is an initiator codon. It also codes for the amino acid methionine.

Analysis

1.) Using Table 15.3 and the table below, write one possible nucleotide sequence for the DNA molecule that contains the gene for this polypeptide.

^{**} UAA, UAG, and UGA are terminator codons.

^{2.)} Draw a labelled diagram to show one codon from a mRNA molecule being transcribed from the DNA strand to form a polypeptide.

seque	ences did your cl	ass come up wit	h? What advant	age might this g	ive a living cell?	
		scription and tra late proteins dire			of cellular energy	. Why do you think the