Biology 3201 Unit 2 Part 1 Mendelian Genetics

Name: _____

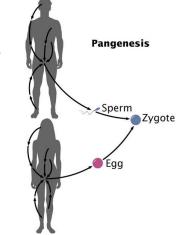
	the study of heredity, or the passing of traits from
parents to offspring	

<u>Historical Explanations of Inheritance</u>

Early experiments included breeding plants and animals in specific ways to produce offspring with desirable characteristics.

Patterns of Inheritance

(Canis lupus lupus)



(384-322 B.C.E.) proposed the

attributes.

Canines, such as the Eurasian wolf (Canis lupus lupus), humans have used special breeding practices to gradually develop breeds of dogs with specific

The Greek philosopher Aristotle

Chromosom

first widely accepted theory of inheritance, called

According to this theory, egg and sperm consist of particles, called _____, from all parts of the body.

Upon fertilization of the egg by a sperm, the pangenes develop into the parts of the body from which they were derived.

In 1677, the amateur scientist Antony van Leeuwenhoek (1632–1723) discovered living sperm in semen with his exquisitely designed single-lens microscopes.

He believed that he saw a complete miniature person, called a ______, in the head of sperm.

Leeuwenhoek believed that the _____ came from the father but developed in the mother.


During the 1800s, when the breeding of ornamental plants was becoming popular, scientists observed that the offspring had characteristics of both parent plants.

The idea of blending became the working theory of inheritance. Scientists believed that characteristics of the parents blended in the offspring in a way that was irreversible. In other words, scientists believed that the original parental characteristics would not reappear in future generations.

None of the explanations of inheritance proposed prior to the 1850s stood the test of time.

Developing a Theory of Inheritance: Gregor Mendel's Experiments

Mr. Gillam

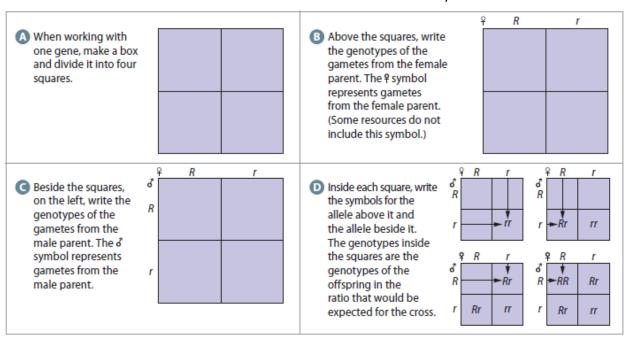
Holy Heart The work of a monk and teacher named

THE WORK OF A MOTING AND	teacher hamea	
	(:	1822–1884)

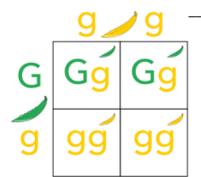
laid the foundation for the field of genetics, the science of inheritance.

Between the years 1856 and 1863, Mendel bred, tended, and monastery garden. He observed many different traits, or characteristics.

Before doing any experiments, Mendel let the plants self-pollinate


to ensure that they were true-breeding.

True-breeding plants exhibit the same characte	eristics generation after generation.	
--	---------------------------------------	--


Then he crossed their offspring of offspring (() with each o	other to create a new s
	parent generation	PARENTAL (P)	Purple White X pp
	 second filial	FIRST FILIAL (F1)	Purple
Mendel's Peas			Pp 1
Mendel studied seven traits tha	at were expressed in two forms.	SECOND FILIAL (F2)	2222
Mendel observed that, for ever	ry trait, the F1 plants showed only	GENERATION	PP Pp Pp pp
one of the two parental charac	teristics.		3 Purple: 1 White
In the cross between plants			
	all the seeds in the F1 genera	tion were	. Although all the

Gene	The set of information that controls a trait	whereby dominant trait (or allele) conceals presence of recessive trait
Alleles	The different forms of a gene	(or allele)trait (or allele) expressed when
Dominant Allele	An allele whose trait always shows up in the organism when the allele is present	present. trait (or allele) not expressed
Recessive Allele	The allele that is masked when a dominant allele is present	when the dominant form is present
Hybrid	An organism that has two different alleles for a trait	Ais a portion of DNA that determines a certain trait. Genes are responsible for the expression of traits.

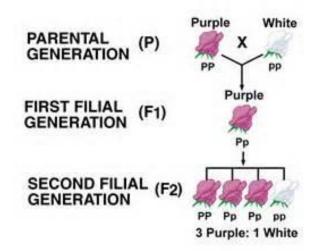
	Mr. Gillam	Holy	Heart	
An	is a specific form of	of a gene. Alleles are responsible	for the variation	s in which a given
trait can be expressed			Phenotype	Genotype
	combination o	of alleles for a trait (what the	Purple	PP
actual genetics/alleles	are)		Pulple	(homozygous)
	can he writ	ten various ways. (e.g., Rr,	Purple	Pp (heterozygous)
R1R2, RR', RW, IAIB).		(2.8.)	Pulple	(heterozygous)
	individual with ide	ntical alleles for a trait	Purple	Pp (heterozygous)
		having		pp
two dominant alleles (BB)	1	White	(homozygous)
		having two re	cessive alleles (b	ob)
	individual with o	different alleles for a trait		
	visib	le expression of a trait (what you	see)	
Mendel's First Law - T	he Law of Segregation			
All individuals have two copies of each factor.	3 pairs of chromosomes:		XX	X
These copies	*			
segregate (separate) randomly during gamete formation, and each gamete receives one copy of every factor.	possible gametes:			3
The Landson Control of the Control o		an inherited trait is dete	ermined by pairs	of factors (alleles)
tnat segregate so that	each gamete contains one contains	ору		
	grid showing	possible results of genetic crosses	;	

_____ describes the number of times a genotype would appear in the offspring after a cross.

number of offspring manifesting a particular trait or combination of traits. It can be determined by doing a cross and identifying the frequency of a trait or trait combinations that will be expressed based on the genotypes of the offspring.

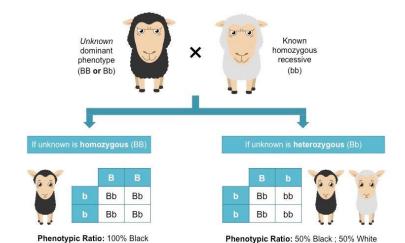
Investigation 14.A Modelling a Monohybrid Cross

Mendel's Monohybrid cross


cross between individuals that differ in one trait. They are both homozygous, one is dominant and the other is recessive.

All offspring in the F1 generation will be Heterozygous.

The resulting F2 generation will have a


1:2:1 Genotypic Ratio

3:1 Phenotypic Ratio

pertains to the relative

Mr. Gillam In humans, black hair colour is completely dominant to red hai with a homozygous red haired female, what are the genotypic	
In humans, black hair colour is completely dominant to red hai with a homozygous red haired female, what are the genotypic	· -
In humans, black hair colour is completely dominant to red hai with a heterozygous black haired female, what are the genotype	• -
Somewhat Harder One Trait Crosses	
In pea plants green seeds are dominant to yellow seeds. If a hoplant, what percent of the offspring will be yellow?	eterozygous plant is crossed with a homozygous recessive
In pea plants green seeds are dominant to yellow seeds. If a he pea plant, what percent of the offspring will have the same ger	

Test Cross

cross

between homozygous recessive individual and an individual with unknown genotype

You can use Punnett squares to predict the genotypes and phenotypes of the offspring of the test crosses.

Much Harder One Trait Cross Questions

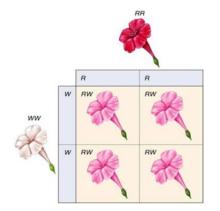
If tallness is a dominant trait of pea plants, what are the genotypes of two pea plants that produce 146 tall and 52 short plants when mated?

If tallness is a dominant trait of pea plants, what are the genotypes of two pea plants that produce 153 tall and 144 short plants when mated?

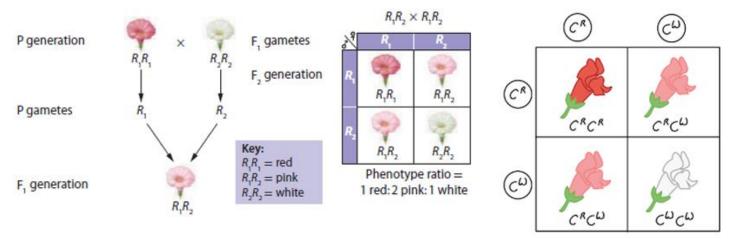
Activity 14.1 Working with Punnett Squares

Exit Card #1

Incomplete Dominance


neither allele for the same gene conceals the presence of the

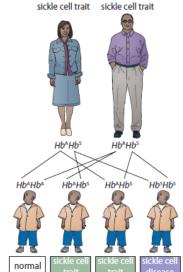
other – blending of the two traits


When representing incomplete dominance, uppercase and lower-case letters are not generally used to represent the alleles.

Some geneticists use all upper-case letters, with subscripts to denote the alleles.

Don't forger about different notations for alleles R_1R_2 , RR', RW, C^RC^W we will now start to see it appearing.

- •Red= RR
- •White= WW
- •RW= pink- each allele is equally expressed to result in a blended product


The allele for red flowers in the four o'clock plant directs the synthesis of red pigment.

I red: 2 pink: I white

When only one allele is present, the flower cannot make enough pigment to make the flowers red, resulting in incomplete dominance (pink flowers).

The allele for normal hemoglobin is represented as Hb^A, and the allele for sickle cell hemoglobin is represented as Hb^S.

Individuals who are homozygous (Hb^SHb^S) have sickle cell disease.

_	_P Hb ^A	Hbs
₽ Hb^	Hb^Hb^	Hb⁴Hbs
Hbs	Hb^Hbs	HbsHbs

Figure 14.11 When a man and a woman are both heterozygous for the sickle cell gene, there is a one in four chance that they will have a child with sickle cell disease.

In humans, hair is incompletely dominant. The combination of straight hair and curly hair produces wavy hair. What are the phenotypic and genotypic ratios if a male with pure straight hair has a child with a female with wavy hair?

_					
Co-	nh.	mi	na	nc	0
CU	u		Hu		

_____ two alleles for a gene are expressed equally

A roan horse or cow is an excellent, visible example of co-dominance.

A roan animal is a heterozygote in which both the base colour and white are fully expressed.

If you look closely at the individual hairs on a blue roan you will see a mixture of black hairs and white hairs.

One allele is expressed in the white hairs, and the other allele is expressed in the black hairs.

A red roan has a mixture of chestnut-coloured hairs and white hairs.

The roan colouring of a horse usually does not affect the head, mane, and tail.

This horse's body looks blue because black and white hairs are thoroughly mixed.

A blue roan (H^BH^W) is the product of a mating between black (H^BH^B) and white (H^WH^W) parents.

In Rhododendron Flowers, Flower colour is Co-dominant. The combination of a red allele and a white allele produces a red and white flower mix. What are the phenotypic and genotypic ratios if a red flower and a white flower plant are crossed?

Exit Card #2

Multiple Alleles (A type of Co-dominance)

refer to the occurrence of a gene with more than two alleles for a particular gene.

In humans, a single gene determines a person's ABO blood type.

This gene determines the type of antigen, if any, that is attached to the cell membrane of red blood cells.

The gene is designated I, and it has three common alleles: I^A , I^B , and i.

Holy Heart

Table 14.2 ABO Blood Types

Genotype	Phenotype	Antigen
ii	О	none
$I^{A}i$	A	A
I _V I _V	A	A
$I^{\mathrm{B}}i$	В	В
$I^{\mathrm{B}}I^{\mathrm{B}}$	В	В
$I^{A}I^{B}$	AB	A and B

______, also called ______, also called ______, is a type of protein found on the

outside of red blood cells.

The protein is genetically inherited (passed down from your parents).

If you have the protein, you are Rhpositive.

If you did not inherit the protein, you are Rh-negative. The majority of people, about 85%, are Rh-positive.

	A -	A +	В -	B +
Red blood cells	•	\	•	ě.
Antigens present	A antigen	A antigen	P B antigen	P Rh antigen

What is the probability that a man who has heterozygous type A blood and a woman who has heterozygous type B blood will have a child with type O blood?

What are the genotypic and phenotypic ratios?

Mr. Gillam	Holy Heart
------------	------------

What is the probability that a man who has homozygous type A+ blood and a woman who has heterozygous type B-blood will have a child with type A+ blood?

Simplified (we will see the complex version soon)

Exit Card #3

M	en	del	's	Sec	ond	Law
---	----	-----	----	-----	-----	-----

_____ two alleles for a gene assort independently of alleles for other genes during gamete formation (not always true)

If genes are located close to each other during ______they often move together.

Two Trait Crosses

A cross that involved two different traits which each have their own pair of alleles

For example Mendel compared the shape of seeds, round (R) vs wrinkled (r) and colour, green (G) vs yellow (g) at the same time.

4x4 = 16 boxes

However you will not always need to do 16, a lot the time it will be 4 or 8

in

In rabbits, gray hair is dominant to white hair and , black eyes are dominant to red eyes. What is the phenotypic and genotypic ratio between a male rabbit with homozygous gray hair and red eyes and a rabbit with heterozygous gray hair and heterozygous black eyes?

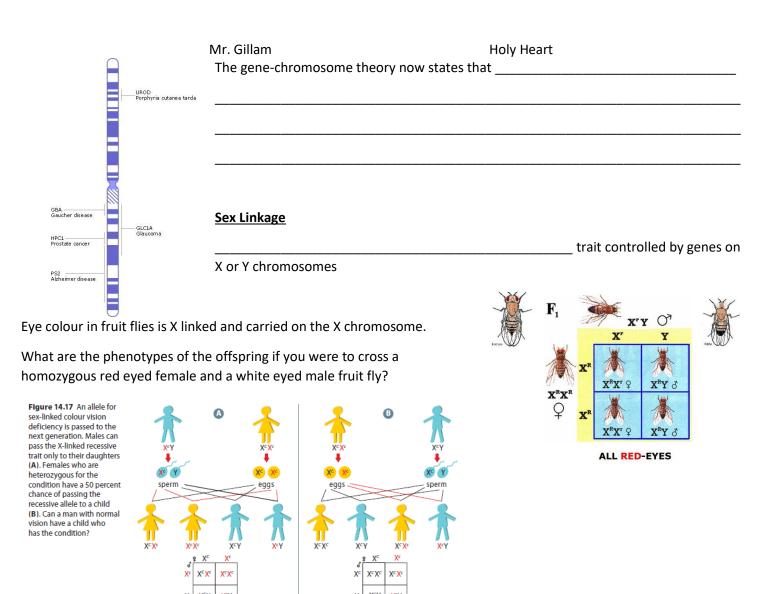
Mr. Gillam Holy Heart

An aquatic arthropod called a Cyclops has antennae that are either smooth or barbed. The allele for barbs (B) is dominant over smooth (bb). In the same organism Non-resistance to pesticides (N) is dominant over resistance to pesticides (nn). A Cyclops that is resistant to pesticides and has heterozygous barbed antennae is crossed with one that is smooth and heterozygous for Non-resistance. What is the chance of an offspring that is heterozygous for both traits?

Mendel's Dihybrid Cross

______ cross between individuals that differ in two traits

Mendel crossed plants that were true-breeding for two different traits with plants that were
______ for the ______ form of the _______ form of the


Mendel crossed _______(____)

with ______(_____).

This produced an ______ of plants that were all heterozygous for both traits (______).

Mr. Gillam	Holy Heart	
Mendel allowed the and then analyzed the traits of the	P generation	TTGG × ttgg
The cross produced F2 plants with the phenotypes of tall with green pods, tall with yellow pods, short with green pods, and short with yellow pods in a ratio of	P gametes	10
Phenotypic Ratio	F ₁ generation	TtGg
For cross that Mendel carried out		TtGg + TtGg
and analyzed, he found the same pattern in the F2 generation.	F ₁ gametes	💦 TG Tg tG tg
Activity 14.2 Analyzing a Dihybrid Cross Exit Card #4	F ₂ generation	TTGG TTGG TtGG TtGG TTGG TTGG TtGG TtGG
Chromosome Theory of Inheritance		Phenotype ratio = 9:3:3:1
in 1902, (1877–1916) in New York, studied sperm development in		student at Columbia University
Sutton examined the processes of and migration of sister chromatids during meiosis I and meiosis II.		
Sutton realized that the distribution of chromosomes into developing gamete	es	
These factors come in pairs, as do chromosomes. During gamete formation, tochromosomes do.	the factors se	gregate just as homologous
Sutton published a paper proposing the theory that the inherited factors des chromosomes.	cribed by Me	ndel are carried on
Around the same time, German biologist	(186	52–1915) was studying

Mr. Gillam Working independently of Sutton, Boveri proposed the observations.	Holy Heart to explain Mendel's
inherited factors (now known as genes) are carried on chromosomes	proplase
AKA	
genes are located on chromosomes, and chromosomes provide the baindependent assortment of genes.	asis for the segregation and
Often referred to as the Sutton-Boveri chromosome theory of inherita	ance.
Genes On The Same Chromosome	E3 43
Sutton predicted that when alleles of two different genes are on the sassort independently. (same chromosome they do not
genes on the same o	chromosome
Experimental data show, however, that linked genes segregate on a regular basis.	
Morgan and The Chromosome Theory of Inheritance	^
Thomas Morgan was skeptical of Suttons work and did experiments with	b b B B
().	A A B B B
He came to the same conclusion that genes were indeed carried on ch	hromosomes.
He developed the theory of	by identifying the gene for white eyes in fruit
One of his students Alfred Sturtevant had assigned genes a numerical and found that linked genes could separate with predictability becaus	
Crossing Over	Synapsis: Pairing of homologous chromosomes
Crossing over is a random event and occurs, with equal probability, at the sister chromatids, except near the centromere. This means that a likely to occur between genes that are farther apart on a chromosome genes that are closer together.	crossover is more Paternal Maternal
Morgan and his students came up with a new definition for the chrominheritance	nosome theory of Crossing over
	X X

Sex Linkage and One Trait Crosses

In fruit flies, the gene for red eyes is dominant over the gene for white eyes. The trait is sex-linked on the X chromosome. What are the genotypic and phenotypic ratios if a heterozygous red-eyed female is crossed with a white eyed male?

Activity 14.4 Sex-linked Inheritance Patterns

Exit Card #5

Polygenic Inheritance

AABB)

longest

(AABb)

long

(AaBB)

long

AaBb

medium

AB

Ab

aB

ab

Human Height trait controlled by many genes

(1)

(AaBb)

Corn Ear Length

- Eye Colour

Polygenic Inheritance in Corn

Ear length is controlled by two genes, A and B. In true-breeding corn with the genotype AABB, four dominant alleles contribute to ear length.

As a result, this genotype has the longest ears.

True breeding corn with the genotype aabb has four recessive alleles, none of which contribute to ear length. Thus, this genotype has the shortest ears.

If true-breeding lines for shortest ears of corn and longest ears of corn are crossed, the F1 generation will have medium length ears (AaBb) where two dominant alleles contribute to ear length.

P - AABB × aabb F1 - AaBb

If we cross two of the F1 generation we get the Punnett square to the right.

If there are three genes (A, B, and C), creating a range of zero to six contributing alleles, there is a more continuous distribution of phenotypes.

If three genes control ear length, there is a phenotypic ratio of 1:6:15:20:15:6:1.

Phenotypic ratio = 1 shortest : 4 short : 6 medium : 4 long : 1 longest

ab

AaBb N

medium

(Aabb)

short

aaBb &

short

aabb >

shortest

shortest	1	2	3	4	5	6	7
medium						\frown	
long					1		
longest	1	1	1	-	-		

Length of ears of corn

(AaBb)

aB

(AaBB)

long

AaBb

medium

aaBB »

medium

aaBb .

short

Ab

(AABb)

long

AAbb

medium

(AaBb)

medium

Aabb

short

Polygenic Inheritance Example

The table below shows the gene pairs involved in determining eye color. If a man with grey-blue eyes is crossed with a woman with green eyes, what are the genotype and phenotype ratios of their offspring?

Genotype	Eye Colour
AA BB	black-brown
AA Bb	dark brown
AA bb	brown
Aa BB	brown-green flecked
Aa Bb	light brown
Aa bb	grey-blue
aa BB	green
aa Bb	dark blue
aa bb	light blue

Exit Card #6

Genes and the Environment

Environmental conditions often affect the expression of genetic traits.

Some genes are influenced by temperature.

Siamese Cats - Their fur is pigmented on the cooler parts of their bodies: the face, ears, tails, and feet. Dark colouring is the result of a gene that is only active below a certain temperature.

Curly Wings Fruit Flies - If flies that are homozygous for curly wings are raised at 25 °C, their wings will be curly. If they are raised at 16 °C, their wings will be straight.

Seasonal Changes in Hares – Snowshow Hares change colour from brown in summer to white in winter with the seasonal temperature changes

Sex determination in reptiles – certain species of reptiles such as turtles – if the eggs are incubated at high temperature they produce females, at low temperatures they produce males.

Some genes are influenced by sunlight

Human Skin – natural skin colour darkens do to exposure to sunlight (tanning)

Hair Colour – The sun bleaches your hair and causes it to become lighter

Some genes are influenced by PH

Hydrangea Plant – a neutral soil will give pink flowers while an acidic soil will give blue flowers.

Some genes are influenced by diet/nutrition

Diet and Nutrition can affect gene expression

STSE CONNECTIONS + SOCIAL AND ENVIRONMENTAL CONTEXT Gene Expression and the Environment

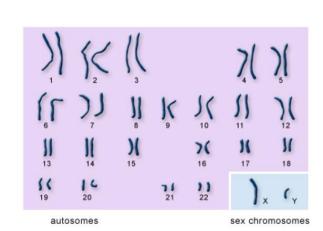
Pedigrees

What is a pedigree?

Thermo-sensitive period

Male specific proteins

emale specific proteins


Environmetal cue

Mr. Gillam	Holy Heart	
flowchart that uses symbols to show		male
inheritance of a trait within a biological family	$\overline{\bigcirc}$	female
and female at the very top of the pedigree.	\bigcirc	mating
one parent is from the original founders and the other is marrying into the	I O	Roman numerals symbolize generations.
family.	$II \bigsqcup_{1} \bigcup_{2} \bigsqcup_{3}$	Arabic numbers symbolize individuals within a given generation.
$lue{lue{lue{lue{lue{lue{lue{lue{$		Birth order, within each group of offspring, is drawn left to right, first-born to last-born.
Non founding mother (married in)	• 1	affected individuals

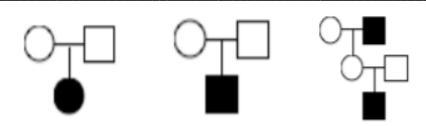
Pedigrees Trace Inherited Genetic Disorders

A genetic disorder is an illness that is caused by changes to a person's genetic material. These changes can range from alterations of a single gene to changes to the structure and number of entire chromosomes.

When geneticists want to learn about the inheritance of human traits, they collect as much information as possible about the history of a biological family and use this information to create a diagram called a pedigree.

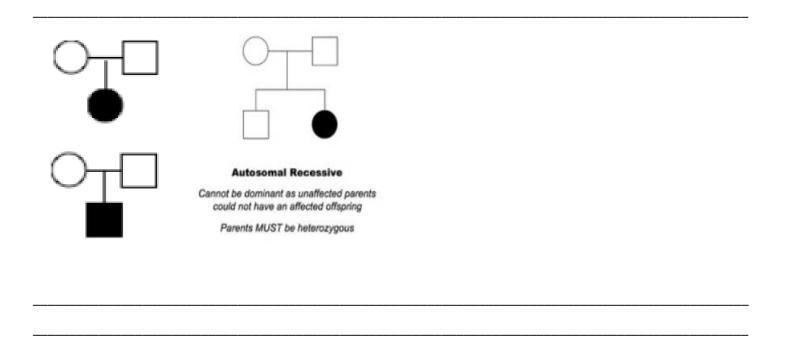
Review of Terminology

chromosome other than sex chromo	osome
X or Y chromos	ome; determines genetic sex
characteristic of some genetic diseases. Autosomal means that the genor non-sex, chromosomes. Dominant means that a mutation is enough to cause the disease. i.e : :	of the disease-associated
disorder, or disease can be passed down through families. An autosom	is one of several ways that a trait, al recessive disorder means
of an abnormal gene must be present in o	rder for the disease or trait to develop.
i.e aa:	


Mr. Gillam	Holy Heart
inheritance	X-linked recessive, carrier mother
is a way a genetic trait or condition can be passed down from parent to child through mutations (changes) in a gene on the X chromosome.	Unaffected Carrier mother
In(who only have one X chromosome), a mutation	
in the copy of the gene on the	××
the condition.	Affected
the condition.	Unaffected Carrier
would need	
of the gene, one on each X	
chromosome.	
General Assumptions	**** #** #**
In the problems that follow, you'll be reasoning about the mode of	Unaffected Unaffected Carrier Affected
transmission of genetic traits that are controlled by,	son daughter daughter son
with, a	·
We also make three simplifying assumptions:	
An individual in the pedigree will have the disorder (
) when th	e individual carries at least one dominant
allele of a dominant trait, or two recessive alleles of a recessive a trait.	
2. In each problem, the trait in question is rare in the general population. As that	sume for the purposes of these problems
	This does not apply to
the founding parents – either or both of the individuals at the top of the peo	ligree could be carriers.
3. Not-Y-Linked. The causative genes in these problems may be autosomal of	r X-Linked, but are
Analyzing a Human Pedigree	

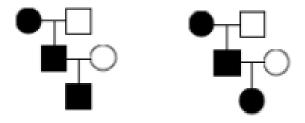
5 Key Clues

There are five things to remember in reasoning about pedigrees.

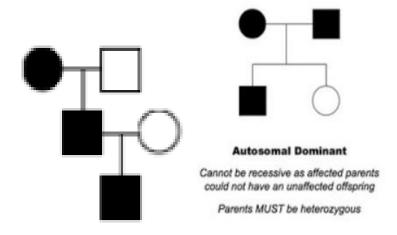

- (1) A unaffected female (white circle) or male (white square) individual cannot have any alleles of a dominant disorder. (because a single allele of a dominant trait causes an individual to be affected).
- (2) Individuals marrying into the family are assumed to not be carriers of recessive traits (because the trait is rare in the population)
- (3) An unaffected individual can be a carrier (have one allele) of a recessive trait. (because two alleles of a recessive trait are required for an individual to be affected)
- (4) When a trait is X-linked, a single recessive allele is sufficient for a male to be affected. (because the male only has one allele of an X-linked trait)
- (5) A father transmits his allele of X-linked genes to his daughters, but not his sons. A mother transmits an allele of X-linked genes to both her daughters and her sons.

Patterns that Indicate A Recessive Trait

Since this is a genetic disease at least one parent must have an allele for the disease.


If neither parent is affected, the trait cannot be dominant.

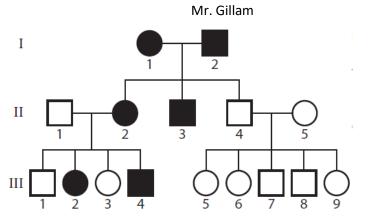
An affected individual must inherit a recessive allele from both parents, so both parents must have an allele.


Mr. Gillam Holy Heart

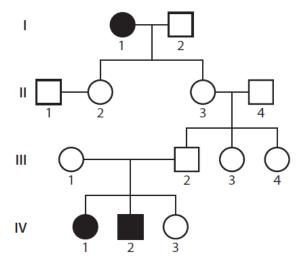
If the father had a recessive X-linked allele, he would have to be affected (since he only has one X-linked allele).

The unaffected mother, who is marrying in, does not carry an allele for the disease; so the affected child inherits an allele only from the affected father.

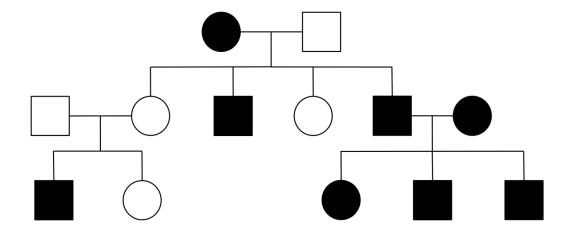
No child could be affected by a single autosomal recessive allele, or X-linked recessive allele, so the trait is dominant.

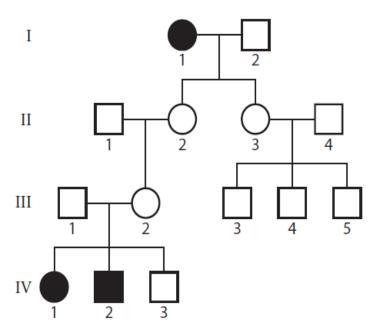


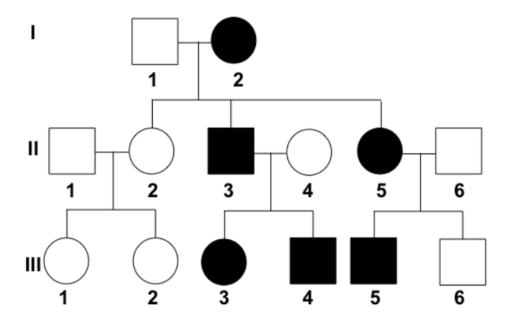
A father does not transmit X-linked alleles to a son, so the disease cannot be X-linked dominant.

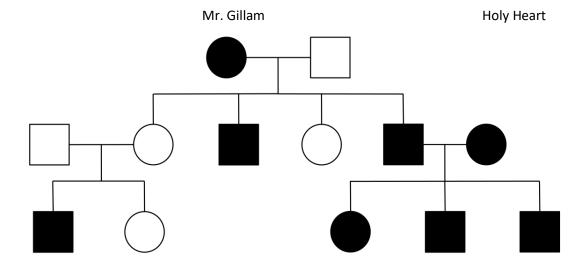

Lets try some

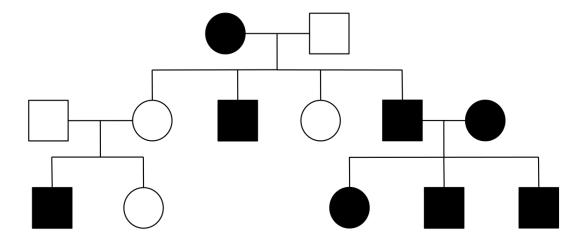
What type of inheritance pattern is shown by this pedigree?

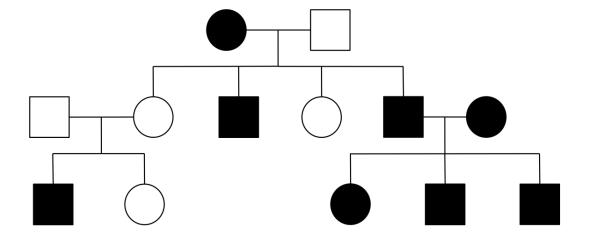



What type of inheritance pattern is shown by this pedigree?


What type of inheritance pattern is shown by this pedigree?


What type of inheritance pattern is shown by this pedigree?


What type of inheritance pattern is shown by this pedigree?


All else fails try them by writing possibilities on them.


All else fails try them by writing possibilities on them.

All else fails try them by writing possibilities on them.

Blood Types can also be shown in pedigrees. In order to do blood types you will have to work them out.

Activity 14.5 Analyzing Pedigrees

Exit Card #7