
*genetics the study of heredity, or the passing of traits from parents to offspring

Historical Explanations of Inheritance

Early experiments included breeding plants and animals in specific ways to produce offspring with desirable characteristics.

Canines, such as the Eurasian wolf (Canis lupus lupus), humans have used special breeding practices to gradually develop breeds of dogs with specific attributes.

Patterns of Inheritance

Eurasian wolf (Canis lupus lupus)

Great Pyrenees (Canis familiaris)

Newfoundland (Canis familiaris)

Labrador retriever (Canis familiaris)

Figure 14.1 The Great Pyrenees is one of the oldest known dog breeds, bred several thousand years ago to protect sheep herds from wolves and bears. With its partially webbed feet, the Newfoundland is a powerful swimmer, famous for water rescues as well as a sweet, gentle temperament. With its short, dense, water-resistant coat, the Labrador retriever was developed to retrieve ducks and fish. Its playfulness makes it one of the most popular dog breeds worldwide.

* The Greek philosopher Aristotle (384-322 B.C.E.) proposed the first widely accepted theory of inheritance, called pangenesis.
* According to this theory, egg and sperm consist of particles, called pangenes, from all parts of the body.
* Upon fertilization of the egg by a sperm, the pangenes develop into the parts of the body from which they were derived.

- In 1677, the amateur scientist Antony van Leeuwenhoek (1632-1723) discovered living sperm in semen with his exquisitely designed single-lens microscopes.
* He believed that he saw a complete miniature person, called a homunculus, in the head of sperm.
* Leeuwenhoek believed that the homunculus came from the father but developed in the mother.

*During the 1800s, when the breeding of ornamental plants was becoming popular, scientists observed that the offspring had characteristics of both parent plants.
*The idea of blending became the working theory of inheritance. Scientists believed that characteristics of the parents blended in the offspring in a way that was irreversible. In other words, scientists believed that the original parental characteristics would not reappear in future generations.

* None of the explanations of inheritance proposed prior to the 1850s stood the test of time.

Developing a Theory of Inheritance: Gregor Mendel's Experiments

*The work of a monk and teacher named Gregor Mendel (1822-1884) laid the foundation for the field of genetics, the science of inheritance.

- Between the years 1856 and 1863, Mendel bred, tended, and analyzed over 28000 pea plants in the monastery garden. He observed many
 different traits, or characteristics.
* Before doing any experiments, Mendel let the plants self-pollinate to ensure that they were true-breeding.
*True-breeding plants exhibit the same characteristics generation after generation.
* He crossed true breeding purple flowers with true breeding white flowers (Parent generation).
*Then he crossed their offspring (F_{1} generation) with each other to create a new set of offspring (F_{2} generation)

PARENTAL GENERATION

FIRST FILIAL GENERATION
(F1)

SECOND FILIAL (F2) GENERATION

*P generation parent generation

* F_{1} generation first filial
* F_{2} generation second filial

Mendel's Peas

* Mendel studied seven traits that were expressed in two forms.
* Mendel observed that, for every trait, the F1 plants showed only one of the two parental characteristics.
\& In the cross between plants with round seeds and plants with wrinkled seeds, all the seeds in the F1 generation were round. Although all the F1 plants had a copy of each form of the factor for seed shape, only one form was shown, or expressed.
Characterlstics
complete dominance inheritance whereby dominant trait (or allele) conceals presence of recessive trait (or allele)
*dominant trait (or allele) expressed when present.
\& recessive trait (or allele) not expressed when the dominant form is present
*A gene is a portion of DNA that determines a certain trait. Genes are responsible for the expression of traits.
*An allele is a specific form of a gene. Alleles are responsible for the variations in which a given trait can be expressed.

Alleles
The different forms of a gene

Dominant

 AlleleAn allele whose trait always shows up in the organism when the allele is present

Recessive

 Allele
Hybrid

The allele that is masked when a dominant allele is present

An organism that has two different alleles for a trait

*genotype combination of alleles for a trait (what the actual genetics/alleles are)

* Genotype can be written various
ways. (e.g., $R r, R_{1} R_{2}, R R^{\prime}, R W,\left.\left.\right|^{A}\right|^{B}$).
*homozygous individual with identical alleles for a trait
* Homozygous dominant having two dominant alleles (BB)
* Homozygous recessive having two recessive alleles (bb)
* heterozygous individual with
different alleles for a trait

Homozygous Dominant
\square

N

Homozygous Recessive
\square

Heterozygous

Mendel's First Law

*The Law of Segregation

* All individuals have two copies of each factor.
*These copies segregate (separate) randomly during gamete formation, and each gamete receives one copy of every factor.
\& law of segregation an inherited trait is determined by pairs of factors (alleles) that segregate so that each gamete contains one copy

3 pairs of chromosomes:

possible gametes:

Punnett square grid showing possible results of genetic crosses

*Genotypic ratio describes the number of times a genotype would appear in the offspring after a cross.

Genotypic Ratio
$2 \mathrm{Gg}: \mathbf{2 g}$
50\% Gg : 50\% gg

Phenotypic ratio pertains to the relative number of offspring manifesting a particular trait or combination of traits. It can be determined by doing a cross and identifying the frequency of a trait or trait combinations that will be expressed based on the genotypes of the offspring.

Remember the capital letter G is dominant so if it is present, the colour will be Green.

Phenotypic Ratio
2 Green : 2 Yellow
50\% Green: 50\% Yellow

Investigation 14.A

* Modelling a Monohybrid Cross

Mendel's Monohybrid cross

* monohybrid cross cross between individuals that differ in one trait. They are both homozygous, one is dominant and the other is recessive.
*All offspring in the F1 generation will be Heterozygous.
*The resulting F2 generation will have a

1:2:1 Genotypic Ratio
*3:1 Phenotypic Ratio

PARENTAL generation

FIRST FILIAL GENERATION
(F1)

SECOND FILIAL (F2) GENERATION

 3 Purple: 1 White

One Trait Crosses

Now we draw a Punnett square and write the possible gametes for the female on

* In humans, black hair colour is top and the male on the left side.
completely dominant to red hair colour. If a homozygous black haired male has children with a homozygous red haired female, what are the genotypic and phenotypic ratios?
First write down the genotypes of the parents

Male: BB
Female: bb
Male is BB (all capitals) because it is homozygous dominant
Female is bb (all small letters) because it is homozygous recessive

One Trait Crosses

* In humans, black hair colour is

Now we draw a Punnett square and write the possible gametes for the female on completely dominant to red hair colour. If a heterozygous black haired male has children with a homozygous red haired female, what are the genotypic and phenotypic ratios?
First write down the genotypes of the parents

Male: Bb
Female: bb
Male is Bb because it is heterozygous Female is bb (all small letters) because it is homozygous recessive

One Trait Crosses

* In humans, black hair colour is completely dominant to red hair colour. If a heterozygous black haired male has children with a heterozygous black haired female, what are the genotypic and phenotypic ratios?
First write down the genotypes of the parents

Male: Bb
Female: Bb
Male is Bb because it is heterozygous Female is Bb because it is heterozygous

Now we draw a Punnett square and write the possible gametes for the female on top and the male on the left side.

Now we complete the table, capitals
 always go in front

Genotypic Ratio: 1 BB : $2 \mathrm{Bb}: 1 \mathrm{bb}$ Phenotypic Ratio: 3 Black Hair : 1 Red Hair

Somewhat Harder One Trait Crosses

In pea plants green seeds are dominant to yellow seeds. If a heterozygous plant is crossed with a homozygous recessive plant, what percent of the offspring will be yellow?

Parent 1: Gg
Parent 2: gg

50% of the offspring will be yellow

Somewhat Harder One Trait Crosses

In pea plants green seeds are dominant to yellow seeds. If a heterozygous plant is crossed with another heterozygous pea plant, what percent of the offspring will have the same genotype as the parents?

Parent 1: Gg
Parent 2: Gg
50% of the offspring will be Gg (same as the parents)

Test Cross

※test cross cross
between homozygous recessive individual and an individual with unknown genotype

* You can use

Punnett squares to predict the genotypes and phenotypes of the offspring of the

If unknown is homozygous (BB)

Phenotypic Ratio: 100\% Black

If unknown is heterozygous (Bb)

Phenotypic Ratio: 50\% Black ; 50\% White

Much Harder One Trait Cross Questions

-If tallness is a dominant trait of pea plants, what are the genotypes of two pea plants that produce 146 tall and 52 short plants when mated?

The first thing we do in a question like this is calculate percent's.

146 tall/ 198 in total $=73.7 \%=75 \%$
52 short/ 198 in total $=26.3 \%=25 \%$
Always round percent's to $25 \%, 50 \%$, and 75%, in single trait crosses when given this type of question

Now make a Punnett Square to represent the information

We will use T for tall and t for short
tt (short) has to be 25% so we will put that in the bottom right corner, 1 out of 4 blocks.

This means that both parents have a recessive allele so we write that on the Punnett Square and fill in the other small t's that have to be present in the other two boxes

Since 75% were tall and it is dominant the other three boxes must have at least one big T so we can write those in.

Now we can finally write the parents alleles on the outside and complete the last box.

Much Harder One Trait Cross Questions

-If tallness is a dominant trait of pea plants, what are the genotypes of two pea plants that produce 153 tall and 144 short plants when mated?

The first thing we do in a question like this is calculate percent's.

153 tall/ 297 in total $=51.5 \%=50 \%$
144 short $/ 297$ in total $=48.5 \%=50 \%$
Always round percent's to $25 \%, 50 \%$, and 75%, in single trait crosses when given this type of question

Now make a Punnett Square to represent the information

We will use T for tall and t for short
tt (short) has to be 50% so we will put that in the bottom two boxes

This means that both parents have a recessive allele so we write that on the Punnett Square and fill in the other small t that has to be present in the other box

Since 50% were tall and it is dominant the other two boxes must have at least one big T so we can write those in.

Now we can finally write the parents alleles on the outside and complete the last box.

Activity 14.1 Working With Punnett Squares

Exit Card \#1

Incomplete Dominance

* incomplete dominance neither allele for the same gene conceals the presence of the other - blending of the two traits
*When representing incomplete dominance, uppercase and lower-case letters are not generally used to represent the alleles.
* Some geneticists use all upper-case letters, with subscripts to denote the alleles.
*Don't forger about different notations for alleles $R_{1} R_{2}, R R^{\prime}$, $R W, C^{R} C^{W}$ we will now start to see it appearing.

-White = WW
-RW= pink- each allele is equally expressed to result in a blended product

Incomplete Dominance

*The allele for red flowers in the four o'clock plant directs the synthesis of red pigment.

* When only one allele is present, the flower cannot make enough pigment to make the flowers red, resulting in incomplete dominance (pink flowers).

I red: 2 pink: I white

Incomplete Dominance

Now we draw a Punnett square and write the possible gametes for the female on * In humans, hair is incompletely top and the male on the left side.
dominant. The combination of straight hair and curly hair produces wavy hair. What are the phenotypic and genotypic ratios if a male with pure straight hair has a child with a female with wavy hair?
First write down the genotypes you

Now we complete the table will be using, their meanings and the parent generation
$\mathrm{H}^{\mathrm{S}}=$ Straight Hair
$\mathrm{H}^{\mathrm{C}}=$ Curly Hair
Male: $\mathrm{H}^{\mathrm{S}} \mathrm{H}^{\mathrm{s}}$
Genotypic Ratio: $2 \mathrm{H}^{\mathrm{S}} \mathrm{H}^{\mathrm{S}}: 2 \mathrm{H}^{\mathrm{S}} \mathrm{H}^{\mathrm{C}}$
Phenotypic Ratio: 2 Straight Hair: 2 Wavy Hair
Female: $\mathrm{H}^{\mathrm{S}} \mathrm{H}^{\mathrm{C}}$

Co-dominance

* co-dominance two alleles for a gene are expressed equally
*The expressed trait is a combination of the phenotypes of both alleles for the gene.
* A roan horse or cow is an excellent, visible
 example of co-dominance.
* A roan animal is a heterozygote in which both the base colour and white are fully expressed. * If you look closely at the individual hairs on a blue roan you will see a mixture of black hairs and white hairs.
* One allele is expressed in the white hairs, and the other allele is expressed in the black hairs.
*A red roan has a mixture of chestnut-coloured hairs and white hairs.

- The roan colouring of a horse usually does not affect the head, mane, and tail.
- This horse's body looks blue because black and white hairs are thoroughly mixed.
- A blue roan $\left(H^{B} H^{\mathrm{W}}\right)$ is the product of a mating between black $\left(H^{B} H^{B}\right)$ and
 white ($H^{\mathrm{W}} H^{\mathrm{W}}$) parents.

Co-dominance

* In Rhododendron Flowers,

Now we draw a Punnett square and write the possible gametes for the female on Flower colour is Co-dominant. The combination of a red allele and a white allele produces a red and white flower mix. What are the phenotypic and genotypic ratios if a red flower and a white flower plant are crossed?
First write down the genotypes you top and the male on the left side. will be using, their meanings and the parent generation

R = Red Flower Allele
$\mathrm{W}=$ White Flower Allele Flower 1: RR

Genotypic Ratio: 4 RW

 Phenotypic Ratio: 4 Red and White Mixed Petals
Activity 14.3

*Analyzing Co-dominant and Incomplete Dominant Inheritance

* Exit Card \#2

Multiple Alleles (A type of Co-dominance)

* Multiple alleles refer to the occurrence of a gene with more than two alleles for a particular gene.
* In humans, a single gene determines a person's ABO blood type.
* This gene determines the type of antigen, if any, that is attached to the cell membrane of red blood cells.
* The gene is designated I , and it

Table 14.2 ABO Blood Types

Genotype	Phenotype	Antigen
$i i$	O	none
$I^{A} i$	A	A
$I^{A} I^{A}$	A	A
$I^{\mathrm{B}} i$	B	B
$I^{\mathrm{B}} I^{\mathrm{B}}$	B	B
$I^{A} I^{\mathrm{B}}$	AB	A and B

Rh factor, also called Rhesus factor, is a type of protein found on the outside of red blood cells.
*The protein is genetically inherited (passed down from your parents).
*If you have the protein, you are Rh-positive.

* If you did not inherit the protein, you are Rh-negative. The majority of people, about 85%, are Rh-positive.

	$\mathrm{A}-$	$\mathrm{A}+$	$\mathrm{B}-$	$\mathrm{B}+$
Red blood cells				
Antigens present	A antigen	A antigen Rh antigen	$Y \mathrm{~B}$ antigen	B antigen Rh antigen

* If you have the A and Rh antigens, your blood type is A-positive (A+).
* If your blood has the B antigen but not the Rh antigen, your blood type is B -negative ($\mathrm{B}-$).
*Rh blood type is even more important for pregnant women.

Multiple Alleles

*What is the probability that a man who has heterozygous type A blood and a woman who has heterozygous type B blood will have a child with type O blood?
*What are the genotypic and phenotypic ratios?

First write down the genotypes of the parents.

Now we draw a Punnett square and write the possible gametes for the female on top and the male on the left side.

$$
\begin{aligned}
& \text { Man }=I^{A} \boldsymbol{i} \\
& \text { Woman }=I^{B} \boldsymbol{i}
\end{aligned}
$$

Genotypic Ratio: $\left.\left.1\right|^{A}\right|^{B}:\left.1\right|^{B i}:\left.1\right|^{A} i: 1 i i$
Phenotypic Ratio: 25\% Type AB Blood, 25% Type B Blood, 25\% Type A Blood, 25\% Type O Blood

Multiple Alleles

What is the probability that a man who has homozygous type A+ blood and a woman who has heterozygous type B- blood will have a child with type A+ blood?

* Simplified (we will see the complex version soon)

First write down the genotypes of the parents.

Now we draw a Punnett square and write the possible gametes for the female on top and the male on the left side.

* Exit Card \#3

Mendel's Second Law

\& law of independent assortment two alleles for a gene assort independently of alleles for other genes during gamete formation (not always true)
*If genes are located close to each other during crossing over in meiosis, they often move together.

Two Trait Crosses

* A cross that involved two different traits which each have their own pair of alleles
* For example Mendel compared the shape of seeds, round (R) vs wrinkled (r) and colour, green (y) vs yellow (Y) at the same time.

* $4 \times 4=16$ boxes
* However you will not always need to do 16, a lot the time it will be 4 or 8

Two Trait Crosses

In rabbits, gray hair is dominant to white hair and , black eyes are dominant to red eyes. What is the phenotypic and genotypic ratio between a male rabbit with homozygous gray hair and red eyes and a rabbit with
heterozygous gray hair and heterozygous black eyes?

Create a label key and the parents

G = Gray hair
$\mathrm{g}=$ white hair
B = Black eyes
b = red eyes
Now use the distributive property from math to make all possible combinations for the gametes

Cross out any duplicates

Parents

Male: GGbb

No duplicates
Now create a table and do
 the cross.

Genotypic Ratio: $1 \mathrm{GGBb}: 1 \mathrm{GGbb}: 1 \mathrm{GgBb}: 1 \mathrm{Ggbb}$ Phenotypic Ratio: 50\% Gray Black eyes : 50\% Gray Red Eyes

Two Trait Crosses

* An aquatic arthropod called a Cyclops has antennae that are either smooth or barbed. The allele for barbs (B) is dominant over smooth (bb). In the same organism Nonresistance to pesticides (N) is dominant over resistance to pesticides (nn). A Cyclops that is resistant to pesticides and has heterozygous barbed antennae is crossed with one that is smooth and heterozygous for Nonresistance. What is the chance of an offspring that is heterozygous for both traits?

B = Barbed
b = smooth
N = Non-resistance
$\mathrm{n}=$ resistance

Cyclops 1: Bbnn

There is a $\mathbf{2 5 \%}$ chance of having offspring that are heterozygous for both traits (BbNn)

Mendel's Dihybrid Cross

* dihybrid cross cross between individuals that differ in two traits
* Mendel crossed plants that were true-breeding for two different traits with plants that were true-breeding for the opposite form of the same two traits.
* Mendel crossed true-breeding tall plants that had green pods (TTGG) with true-breeding short plants that had yellow pods (ttgg).
*This produced an F1 generation of plants that were all heterozygous for both traits (TtGg).
* Mendel allowed the F1 plants to self-pollinate and then analyzed the traits of the F2 plants.
* The cross TtGg \times TtGg produced F2 plants with the phenotypes of tall with green pods, tall with yellow pods, short with green pods, and short with yellow pods in a ratio of 9:3:3:1. Phenotypic Ratio
*For every dihybrid cross that Mendel carried out and analyzed, he found the same pattern in the F2 generation.

Activity 14.2

*Analyzing a Dihybrid Cross

Chromosome Theory of Inheritance

in 1902, Walter Sutton (1877-1916), a graduate student at Columbia University in New York, studied sperm development in grasshoppers.

* Sutton examined the processes of segregation of homologous
chromosomes and migration of sister chromatids during meiosis I and meiosis II.
*Sutton realized that the distribution of chromosomes into developing gametes follows the pattern for the inherited factors proposed by Mendel. These factors come in pairs, as do chromosomes. During gamete formation, the factors segregate just as homologous chromosomes do.
* Sutton published a paper proposing the theory that the inherited factors described by Mendel are carried on chromosomes.
*Around the same time, German biologist Theodor Boveri (1862-1915) was studying chromosomes during meiosis in sea urchins.
*Working independently of Sutton, Boveri proposed the same theory to explain Mendel's observations.

Chromosome Theory of Inheritance

*chromosome theory of inheritance inherited factors (now known as genes) are carried on chromosomes
*AKA

* genes are located on chromosomes, and chromosomes provide the basis for the segregation and independent assortment of genes.
* Often referred to as the SuttonBoveri chromosome theory of inheritance.

Genes On The Same Chromosome

* Sutton predicted that when alleles of two different genes are on the same chromosome they do not assort independently. (not really - crossing over)
*linked genes genes on the same chromosome
* Experimental data show, however, that linked genes segregate on a regular basis.

Morgan and The Chromosome Theory of Inheritance

* Thomas Morgan was skeptical of Suttons work and did experiments with fruit flies (Drosophila).
* He came to the same conclusion that genes were indeed carried on chromosomes.
* He developed the theory of Sex-Linkage by identifying the gene for white eyes in fruit flies was carried on the \mathbf{X} chromosome.
* One of his students Alfred Sturtevant had assigned genes a numerical value based on location along the chromosome and found that linked genes could separate with predictability because of Crossing Over.

Crossing Over

- Crossing over is a random event and occurs, with equal probability, at nearly any point on the sister chromatids, except near the centromere. This means that a crossover is more likely to occur between genes that are farther apart on a chromosome than between genes that are closer together.
* Morgan and his students came up with a new definition for the chromosome theory of inheritance
> *Gene linkage and crossing over increase variation in offspring

Synapsis: Pairing of homologous chromosomes

Modern Chromosome Theory of Inheritance

*The genechromosome theory now states that genes exist at specific sites arranged in a linear manner along chromosomes.

Chromosome 1

Chromosome 3

Sex Linkage

- sex-linked trait trait controlled by genes on X or Y
chromosomes
* Eye colour in fruit flies is X linked and carried on the X chromosome.
* What are the phenotypes of the offspring if you were to cross a homozygous red eyed female and a white eyed male fruit fly?

\mathbf{F}_{1}

ALL RED-EYES

Sex Linkage and One Trait Crosses

In fruit flies, the gene for red eyes is dominant over the gene for white eyes. The trait is sex-linked on the X chromosome. What are the genotypic and phenotypic ratios if a heterozygous red-eyed female is crossed with a white eyed male?
First write down the genotypes you will be using, their meanings and the parent generation
$X^{R}=$ Red Eyes
$X^{r}=$ White Eyes
$Y=$ Male
Male: $X^{r} Y$
Female: $X^{R} X^{r}$

Genotypic Ratio: $1 X^{R} X^{r}: 1 X^{r} X^{r}: 1 X^{R} Y: 1 X^{r} Y$
Phenotypic Ratio: 25\% Female Carrier : 25\% Female White Eyed : 25\% Red Eyed Male : 25\% Male White Eyed

Activity 14.4

* Sex-linked Inheritance Patterns

- Exit Card \#5

Polygenic Inheritance

* continuous trait trait for which phenotypes vary between extremes
* Human Height

* polygenic trait trait controlled by many genes
* Corn Ear Length
* Eye Colour

Polygenic Inheritance in Corn

* Ear length is controlled by two genes, A and B. In true-breeding corn with the genotype AABB, four dominant alleles contribute to ear length.
* As a result, this genotype has the longest ears.
* True breeding corn with the genotype aabb has four recessive alleles, none of which contribute to ear length. Thus, this genotype has the shortest ears.
* If true-breeding lines for shortest ears of corn and longest ears of corn are crossed, the F1 generation will have medium length ears (AaBb) where two dominant alleles contribute to ear length.
* P - AABB \times aabb

F1 - AaBb

* If we cross two of the F1 generation we get the Punnett square to the right.

If there are three genes (A, B, and C), creating a range of zero to six contributing alleles, there is a more continuous distribution of phenotypes.
*If three genes control ear length, there is a phenotypic ratio of 1:6:15:20:15:6:1.

Polygenic Inheritance Example
 Parents

*The table below shows the gene pairs involved in determining eye color. If a man with grey-blue eyes is crossed with a woman with green eyes, what are the genotype and phenotype ratios of their offspring?

Genotype	Eye Colour
AA BB	black-brown
AA Bb	dark brown
AA bb	brown
Aa BB	brown-green flecked
Aa Bb	light brown
Aa bb	grey-blue
aa BB	green
aa Bb	dark blue
aa bb	light blue

Genotypic Ratio: 1 AaBb : 1 aaBb
Phenotypic Ratio: 50\% Light Brown Eyes : 50\% Dark Blue Eyes

* Exit Card \#6

Genes and the Environment

Environmental conditions often affect the expression of genetic traits.

* Some genes are influenced by temperature
*Siamese Cats - Their fur is pigmented on the cooler parts of their bodies: the face, ears, tails, and feet. Dark colouring is the result of a gene that is only active below a certain temperature.
* Curly Wings Fruit Flies - If flies that are homozygous for curly wings are raised at $25^{\circ} \mathrm{C}$, their wings will be curly. If they are raised at 16 ${ }^{\circ} \mathrm{C}$, their wings will be straight.
* Seasonal Changes in Hares - Snowshow Hares change colour from brown in summer to white in winter with the seasonal temperature changes
* Sex determination in reptiles - certain species of reptiles such as turtles - if the eggs are incubated at high temperature they produce females, at low temperatures they produce

Thermo-sensitive period

* Some genes are influenced by sunlight * Human Skin - natural skin colour darkens do to exposure to sunlight (tanning)
* Hair Colour - The sun bleaches your hair and causes it to become lighter
* Some genes are influenced by PH
*Hydrangea Plant - a neutral soil will give pink flowers while an acidic soil will give
 blue flowers.
* Some genes are influenced by diet/nutrition
* Diet and Nutrition can affect gene expression

B
Additional

STSE

*CONNECTIONS + SOCIAL AND ENVIRONMENTAL CONTEXT

* Gene Expression and the Environment

